New Insights into Wnt–Lrp5/6–β-Catenin Signaling in Mechanotransduction

نویسندگان

  • Kyung Shin Kang
  • Alexander G. Robling
چکیده

Mechanical loading is essential to maintain normal bone metabolism and the balance between bone formation and resorption. The cellular mechanisms that control mechanotransduction are not fully defined, but several key pathways have been identified. We discuss the roles of several components of the Wnt signaling cascade, namely Lrp5, Lrp6, and β-catenin in mechanical loading-induced bone formation. Lrp5 is an important Wnt co-receptor for regulating bone mass and mechanotransduction, and appears to function principally by augmenting bone formation. Lrp6 also regulates bone mass but its action might involve resorption as well as formation. The role of Lrp6 in mechanotransduction is unclear. Studies addressing the role of β-catenin in bone metabolism and mechanotransduction highlight the uncertainties in downstream modulators of Lrp5 and Lrp6. Taken together, these data indicate that mechanical loading might affect bone regulation triggering the canonical Wnt signaling (and perhaps other pathways) not only via Lrp5 but also via Lrp6. Further work is needed to clarify the role of the Wnt signaling pathway in Lrp5 and/or Lrp6-mediated mechanotransduction, which could eventually lead to powerful therapeutic agents that might mimic the anabolic effects of mechanical stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling.

Frizzled and LRP5/6 are Wnt receptors that upon activation lead to stabilization of cytoplasmic β-catenin. In this study, we review the current knowledge of these two families of receptors, including their structures and interactions with Wnt proteins, and signaling mechanisms from receptor activation to the engagement of intracellular partners Dishevelled and Axin, and finally to the inhibitio...

متن کامل

SnapShot: Wnt/β-Catenin Signaling

Molecules labeled in green and blue play positive and negative roles in Wnt/β-catenin signaling, respectively. Molecules that are labeled in both colors have dual roles. (Top left) Wnt biogenesis. A lipid modification is added to Wnt ligands by Porc in the endoplasmic reticulum (ER). Wnt ligands are glycosylated in the ER and Golgi and require Wls (also known as Evi) to traffic through the Golg...

متن کامل

Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis

Wnt regulates bone formation through β-catenin-dependent canonical and -independent noncanonical signaling pathways. However, the cooperation that exists between the two signaling pathways during osteoblastogenesis remains to be elucidated. Here, we showed that the lack of Wnt5a in osteoblast-lineage cells impaired Wnt/β-catenin signaling due to the reduced expression of Lrp5 and Lrp6. Pretreat...

متن کامل

A p120-catenin-CK1epsilon complex regulates Wnt signaling.

p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. We describe here that p120-catenin is required for Wnt pathway signaling. p120-catenin binds and is phosphorylated by CK1ε in response to Wnt3a. p120-catenin also associates to the Wnt co-receptor LRP5/6, an interaction mediated by E-cadherin, showing an unexpected physical link between adherens j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014